Modeling Web Applications

Kieran Mathieson

Abstract

This paper describes a technique called WAM, for Web Application Modeling. It helps designers create
graphical models of small to medium sized Web applications. WAM helps designers visualize browser/server
interaction as users work. WAM is easier to learn, and easier to use than UML.

Introduction

A Web site is often the face a company presents to its
constituents. It is a set of static pages delivering the
same information to every user. In contrast, a Web ap-
plication helps constituents do business with the com-
pany. Customers can place orders, and check on order
status. Vendors can bid on contracts. Employees can
change benefits plans. Web sites and Web applications
use much of the same technology, but the business pur-
poses they serve are different.

Design considerations are different between the two.
A Web site for shareholders should be visually appeal-
ing and easy to navigate. It might use animation and
colorful charts to show changes in share price. On the
other hand, a Web application for employees might
have a sparse, utilitarian look. The emphasis would
be on helping employees perform tasks, like updating
benefits plans, quickly and accurately.

Web applications vary widely in scope. Some, like an
airline’s flight booking system, are multi-million dol-
lar efforts involving dozens of people working over
several years. Others are small systems created by a
single person in a week or two, such as a system to
book equipment for meetings. Companies often have
dozens of small Web applications like this. Some ap-
plications would be created by the Information Sys-
tems (IS) department, but others would be built by
people working in accounting, marketing, and other
functional areas. They might not be Information Tech-
nology (IT) professionals, but they have taught them-
selves enough to write simple software.

This paper describes a technique called Web Appli-

AJBR

Alliance Journal of Business Research

cation Modeling, or WAM, that can help designers
model Web applications. It is oriented to small to
medium sized projects, where budgetary constraints
prohibit the use of more expensive methods. It can
be used by both IT professionals and user-developers.
The next section identifies situations where WAM
might be of use, and where it would not be appropri-
ate. The technique is then described.

Why WAM?

The unified modeling language (UML) is the best
known modeling toolset. The nonproprietary language
was first developed by Grady Booch, Ivar Jacobson,
and James Rumbaugh in the late 1990s, and accepted
as a standard by the Object Management Group. UML
2.0, the current version, contains 13 types of diagrams:
activity, class, communication, component, compos-
ite structure, deployment, interaction, object, package,
state machine, sequence, timing, and use case. Soft-
ware development processes like the rational unified
process (see, for example, Shuja and Krebs, 2007) are
based around UML.

UML is a heavyweight tool set. Its diagram types can
model large, complex systems that use many different
technologies. However, small to medium Web appli-
cations can be modeled in simpler ways. Further, Web
applications have quirks stemming from the fact that
Web technology was designed with static Web sites,
not applications, in mind. A Web-specific modeling
method can allow for these quirks, something that may
be more difficult with UML.

UML takes a significant amount of time to learn.
Professional developers usually have been trained in

Kieran Mathieson

UML. However, smaller Web applications may be cre-
ated by people who have not had that training. UML
training may not be cost effective for these people, es-
pecially if they are only ever going to develop simpler
applications.

Most Web applications share the same architecture,
shown in Figure 1. A user with a Web browser con-
nects to a Web server. The server has access to files
containing (1) Web pages, (2) programs that create
Web pages customized to a specific user, and (3) a
database server. The Web server runs a program to
create a page for the user. The page might contain
simple programs that run in the browser, usually writ-
ten in the language JavaScript. For example, suppose
a customer connects to a login page on Web site, and
types a user name and a password. The Web server
runs a program that checks that information against a
database. The server now knows the customer’s iden-
tity. The Web server can run a program that extracts
data on his/her orders from the database, and generates
a Web page showing that information.

Web applications are written in two basic styles: page-
to-page, and Ajax. In page-to-page, most of the pro-
gramming logic runs on the Web server, with only a
little (if any) logic running on the client. When a user
makes a request, an entirely new page is generated,
which contains the information. Nothing from the ear-
lier page is retained; it is completely replaced. This is
the way most of today’s Web applications work.

The second style is Ajax (McLaughlin, 2005). Ajax
applications resemble traditional client/server sys-
tems. The programming logic is more evenly split
between the client (the user’s Web browser) and the
server. When a user makes a request, the server only
sends the raw data the user wants to his or her Web
browser. A program running in the Web browser for-
mats the information and places it in the page being
displayed. The rest of the page is untouched.

Ajax applications are faster, since they retrieve less
data from the server. They also allow programmers to
create more sophisticated user interfaces on the client
computer. However, Ajax technology is not yet ma-
ture. There are many Ajax programming libraries vy-
ing for attention from programmers. Further, many

AJBR

Alliance Journal of Business Research

Web application programmers are just starting to learn
about Ajax. It will be at least several years before Ajax
is standard practice.

So, a modeling technique for small to medium Web
applications should be:

e Quick to learn
e Easy to use

e Represent Web technology in a natural way, de-
spite its quirks

e Easily model page-to-page systems

e Easily model Ajax systems

WAM is designed with these goals in mind.
WAM Elements

WAM diagrams include elements important in Web
application design, while setting aside elements that
typically do not affect control flow or functionality.
For instance, the colors and fonts used on a page af-
fect the look-and-feel of the final implementation, but
usually don’t change the way the application is struc-
tured.

A WAM diagram is page-centric. For page-to-page
applications, WAM shows what elements trigger page
transitions and what data is passed. A slightly different
approach is used for Ajax, as shown below. A WAM
diagram also includes client and server pseudocode for
each page, and names page elements used in the pseu-
docode. “Pseudocode” is programming logic written
in something that approaches normal English. It is in-
formal, while still communicating the essentials.

Page Elements

Figure 2 shows a page. The solid rectangle encloses
the visible page. The broken rectangle below it con-
tains pseudocode. Everything in a serif font, like
Times Roman, appears to the user. Text in a sans serif
font, like Arial or Helvetica, is an identifier, used in the
pseudocode to refer to an element on the page. This
convention is for WAM diagrams only, of course. The
text might be rendered in different fonts in the final
implementation.

Modeling Web Applications

Consider the visible page first. Each page has a page
identifier in the upper left. Text elements, like page
headings, instructions, and so on, use a plain serif
font. There is no need to include all text exactly as
it will appear on the page. A short label will suf-
fice. For instance, text giving the user detailed instruc-
tions might be denoted simply as “User instructions.”
Again, WAM focuses on elements affecting control
flow and functionality. Unnecessary details can make
a diagram harder to understand.

Text form fields are in a box as shown in Figure 2.
The text inside the box gives the field’s identifier, used
in the pseudocode. For instance, the field in Figure 3
might be coded as:

<input type="text" name="lastName"
size="30" />

Radio buttons are as shown in Figure 2. The identifier
is usually the name of the button group. Images, but-
tons, and hidden form fields are as shown. WAM does
not differentiate between buttons implemented using
, <input type="submit ">, or <button>.
Designers can make this distinction if they choose,
but it isn’t important for most design purposes. Note
that images will not need identifiers if they are not re-
ferred to in code. Buttons, text, and other elements
will need identifiers if referred to in code. For in-
stance, JavaScript code might change a text element
on the page. The element could be represented like
this:

(userMessage)

where userMessage is the element’s identifier. The re-
sponse element in Figure 9 is an example.

Figure 4 shows suggested symbols for other widgets.
Symbols can be added as needed. For example, devel-
opers might create a new symbol for a menu widget
implemented in JavaScript.

Suppose a form containing widgets needs
to be referenced in pseudocode, as in:
<form name="orderForm" It can be designated as
shown in Figure 5.

AJBR

Alliance Journal of Business Research

Designers can group widgets together with a solid
rectangle. Figure 6 shows an example. This makes
it easier to refer to the widgets as a group.

Now consider the pseudocode box in Figure 2.
Events are shown in bold text, like Load (the page
loads) and Submit (the user clicks a submit button).
Server-side pseudocode is in italics. Client-side pseu-
docode is in normal sans serif text. Usually, all of
the server-side code will appear before the client-side
code, since that is the normal flow in Web applications.

The pseudocode shows application logic in general,
rather than specific programming constructs. Too
much detail at the design stage can obscure the ap-
plication’s overall flow. For instance, this line of
JavaScript:

if (document.userForm.lastName == ’’)
alert(’Please enter your last name’);

should not be in the pseudocode. This line:
Alert user if lastName is blank

is specific enough for the design stage.

Although most pseudocode is informal text, we rec-
ommend that at least three words be reserved: param,
session, and application. The first refers to data being
transferred between pages in a GET or POST, as in:

Fetch param userld

The second and third refer to special variable scopes
maintained by environments like ASP and PHP (see
Yang, 2007, and Welling and Thomson, 2005). A
session variable is available to all pages within a ses-
sion (usually defined as client accesses from the same
browser instance in a given period), but not across ses-
sions. An application variable is available to all pages
within an application. Here is a sample pseudocode
line:

Store userld into session(userld)

Session and application variables are used often, but
are a source of errors. For instance, a session variable

Kieran Mathieson

might not be initialized or deallocated correctly, and
contain an old value the second time it is used. Ap-
plication variables that are not deallocated after they
are no longer needed waste memory, and reduce per-
formance if they accumulate.

Important session and application variables should be
explicitly tracked during design. A separate box can
record session and application variables used in a dia-
gram, as show in Figure 7. If a developer needs to find
pages using particular variables, it is easier to check
these boxes than to examine the pseudocode on every

page.

Finally, note that some “pages” have no visible display
at all. They execute server-side code, and then pass
control to another page. Figure 8 shows an example.

Page Transitions

Usually a page transition is triggered by a specific el-
ement on a page, like a submit button. Data is then
passed to another page. Figure 9 shows how WAM
represents page transitions. The transition shows
which element on the source page (page 1) triggers
the transition, the target of the transition (page 2), and
the parameters that are sent. The diagram also shows
the code that is executed on the client before the data
is sent, and the code executed on the server after it is
sent. The off-page connectors are explained below.

For Ajax applications, WAM shows destination states,
rather than pages. Users see more-or-less the same
information in page-to-page and Ajax applications.
Whether the Web server sends an entirely new page
(page-to-page), or a program on the client updates the
current page (Ajax), the information is shown. A des-
tination page (page-to-page) and a destination page
state (Ajax) are equivalent, or at least can be consid-
ered as such during design.

So, Ajax code is handled by naming major page states,
as if they were separate pages. This simple method
has two important advantages. First, designers do not
need to learn a new set of symbols for Ajax. Second,
designers can move between page-to-page and Ajax
implementations of page transitions, without changing
the underlying logic of the WAM diagram.

AJBR

Alliance Journal of Business Research

Of course, designers will want to note which WAM
pages are really states of the same Ajax page. This is
easily done by using an extended version of the page
label. For example, suppose the email list logic in Fig-
ure 9 was rewritten using Ajax. It might be modeled
as shown in Figure 10. A single Ajax page, A-1, has
two major states, 1 and 2. The page labels reflect the
relationship.

Organizing Modules

WAM defines a module as a group of pages and/or
modules that can be treated as a single conceptual unit.
For example, a module might be a group of pages that
perform a particular task. A module is a psychological
construct, not a technical one, since the goal is to make
it easier for designers to think about the application’s
structure. Designers should choose whatever modules
make the most sense to them. “Divide and conquer”
is a key design principle, meaning that complex sys-
tems are most easily designed by breaking them down
into simpler parts. This reduces the number of things
designers have to think about at one time.

Figure 9 shows a module that adds users to an email
list. The module’s name, “Add to Email List,” is in
large type. Off-page connectors show entry points to
the module, as well as exit destinations. Connectors
to pages in other modules include the module name as
well as the page identifier.

Modules are arranged hierarchically. For instance, an
online training system might have a home page, a con-
tact page, a login module, a content model, and a test-
ing module. The login module might have a login form
page, a login processing page, a login success page,
and a login failure page. The testing module might
have contents pages, a quiz module, and a grade sum-
mary page, and so on.

Figure 11 shows an application diagram, that is, the
top-level diagram summarizing the entire application.
To simplify the discussion, it omits logout, help, or
other necessary functions. The rounded boxes show
modules expanded in other WAM diagrams. Page
transitions are as before, and include parameters.

Session and application variables require special atten-
tion. While not directly passed between modules, they

Modeling Web Applications

often connect them logically. Our solution is to add a
pseudocode box for the module, showing the session
variables it sets. Code could be added for other things
affecting downstream modules, like translating login
IDs to customer IDs.

Modules don’t physically exist on the Web server, of
course, although all of a module’s files might be stored
in the same server directory. Modules are concep-
tual entities only, used to help designers structure their
thoughts. Pseudocode scripts for modules don’t exist
either, that is, there is no file implementing the code
contained in these scripts. Instead, they are taken from
the pseudocode scripts of pages in the module. In Fig-
ure 11, the code:

Set session(userId)
Set session(userName)

is executed by a page inside the login module. It is
recorded in the application diagram to show how the
application works, which is, after all, the goal.

Other Options

There are other options that, while not always needed,
will be useful in some cases. First, GET or POST can
be prepended to the parameter list of a page transi-
tion, if desired. Second, data types could be attached
to some or all of the parameters. This might be use-
ful if, for example, binary data is attached to an HTTP
transaction. Third, the diagram for a module may span
more than one page. Off-page connectors can be used,
but need not contain the module name. When a con-
nector appears without a module name, it is under-
stood to refer to the current module.

Fourth, there is usually a need to attach notes to a di-
agram, explaining how something works, why it was
done a certain way, or where to get more information.
Notes are invaluable for maintainers, who need to par-
tially reconstruct the thought processes of designers
to make appropriate changes. Figure 12 shows some
notes.

Using WAM to Model Web Applications

It is important to understand WAM’s role in Web
application development. = WAM only supports a

AJBR

Alliance Journal of Business Research

project’s design phase. It will not, for instance, help
define user requirements. It would be a mistake in
most cases to build a WAM diagram after the first user
interview. Instead, designers should make sure they
know what users want, before starting WAM model-
ing. Further, designers should make sure that users
themselves know what they want.

Second, WAM directly models interaction between
the browser and the first Web application layer. It
may or may not model server-based logic hidden in
Java Beans, .NET components, or other server ob-
jects (although WAM diagrams should model the in-
terface between server logic and these entities in pseu-
docode). UML’s class diagrams and object sequence
diagrams model server objects well. The choice of
WAM or UML for server objects is up to the designers.
Of course, WAM does not model databases. Entity-
relationship modeling (Pedersen, 2007) helps with this
task.

WAM has a specific role in Web application develop-
ment. It focuses on the sometimes troublesome in-
teraction between browsers and the servers that work
directly with them. Technical artifacts like session
variables exist because Web technology was designed
to support Web sites, not Web applications. The re-
strictions these artifacts place on design will remain
for some years, especially for individual developers
and small teams using server-side technologies like
ASP and PHP. WAM represents the common elements
of these constrained systems, helping designers work
within them more effectively.

Developers should customize WAM for their own cir-
cumstances. Perhaps they will need symbols for new
elements. It is less important exactly what symbols are
used, than that the symbols have a defined meaning.

Designers can make WAM diagrams with just about
any drawing package. However, we recommend a
vector-oriented program (like Microsoft Visio, Dia,
or Open Office’s Draw) rather than a bitmap-oriented
program (like Paint), since diagram editing will be
much easier with the former. WAM uses basic sym-
bols like boxes and lines for the most part. More com-
plex symbols, like the combo symbol in Figure 4, can
be created once and copied as needed. Since the ends

Kieran Mathieson

of page transition lines stop on drawing object bound-
aries, they are well suited for packages that support
object connectors, as most vector-oriented programs
do.

Conclusion

WAM helps in several ways:

o WAM helps capture designs in a structured way.

e WAM focuses attention on important aspects of
Web design, like the way application and ses-
sion variables tie pages together.

e WAM diagrams help developers communicate
with project leaders, consultants, and informed
users, as well as with each other.

e The diagrams help document applications, re-
ducing maintenance costs.

e Developers of future systems can reuse existing
WAM models, further improving quality and re-
ducing costs.

o WAM is easy to learn.
o WAM is easy to use.

WAM has strengths but also has limits. First, it does
not help define user requirements, that is, what the
system should do for the users’ business. Second,
WAM does not model all the things designers need
to think about. For example, it does not cover data
modeling; entity relationship modeling is the tool of
choice for that (Pedersen, 2007). WAM focuses on
the client/server interactions that often trouble Web
designers, without duplicating other models.

Third, WAM should not be used to model applica-
tions that create very complex GUI interfaces, like

that of the spreadsheet in Google Documents (see
http://docs.google.com). Such applications are com-
plicated enough to justify the use of UML. However,
the vast majority of Web applications that companies
create will not be this complex.

In summary, WAM is an approach to modeling Web
applications. It focuses on the interaction between
browsers and the servers that work directly with them,
a set of interactions that is critical in Web application
design. It is easy to learn, and easy to use. WAM helps
designers with the murky realities of today’s Web ap-
plications.

References

McLaughlin, B. (2005). Mastering Ajax. IBM de-
veloperWorks. Retrieved November 13, 2007, from
http://www.ibm.com/developerworks/web/
library/wa-ajaxintrol.html

Pedersen, A. A. (2007). Entity Relationship Mod-
eling. Dev Articles. Retrieved from http://www.
devarticles.com/c/a/Development-Cycles/
Entity-Relationship-Modeling/, November 12,
2007.

Shuja, A. K., and Krebs, J. (2007). Rational Unified
Process Reference and Certification Guide. Indianapo-
lis, Indiana: IBM Press.

Welling, L., and Thomson, L. (2005). PHP and
MySQL Web Development, 3rd edition. Indianapolis,
Indiana: Sams Publishing.

Yang, H. (2007). ASP Sessions. Retrieved from
http://www.herongyang.com/asp/session.
htmlonNovember13, 2007.

ABOUT THE AUTHORS

Kieran Mathieson (mathieso@oakland.edu) is Asso-
ciate Professor of Information Systems at Oakland

AJBR

Alliance Journal of Business Research

University in Rochester, Michigan. He was born in
Brisbane, Australia and obtained his Ph.D. from In-
diana University in the U. S. He has published nu-

Modeling Web Applications

merous journal articles and presented papers at several — the use of information management in ethical decision
conferences. His research centers on (1) information making.
management in small voluntary organizations, and (2)

Appendix
Figure 1.
Web Application Architecture
e m e .
. Pagesand ‘!
i templates
e]_.______'
Br0w§er on Web Database
user's PC server server
Webpage \ _______ .
Content : T :
+ Programs i
R
3Pro§rams§

AJBR

Alliance Journal of Business Research

Kieran Mathieson

Figure 2.
Page Elements

Visible page

Page J .
identifier Text Element
Text element ¢

| Button] name

] name

[name J4—

—— Text
Text field

#4—+— Radio
buttons

—— Hidden field

Load
Pseudocode server-side
Pseudocode client-side

Submit
Pseudocode client-side

Pseudocode

Figure 3.
A Text Form Field

[lastName |

AJBR

Alliance Journal of Business Research

Modeling Web Applications

Figure 4.
Other Widgets

applet

checkbox

combo v

[& file |

list

* password *

textarea

Figure 5.
A Form Name

form name

Text element

name

name

AJBR

Alliance Journal of Business Research

Kieran Mathieson

AJBR

Alliance Journal of Business Research

Figure 6.
Grouped Widgets

Menu
Edit
Move
Delete
Help
Finished

Figure 7.
Session and Application Variables

Session
userld
userHandle

Application
userCount

Figure 8.
Page with Code Only

Load
Fetch param userld
Fetch param userHandle
Update database
If update OK

Go to main menu
Else

Go to error page

Modeling Web Applications

Figure 9.
A Page Transition

Add to Email List

Please enter your
; { response)
name and cmail =
Home: 1,2,3, 4 [TS | name, [Back to Menul—H#{ Home: 3
email
. Load
| email | Fetch param name
Fetch param email

| Submit } Update database

If update OK
Submit response = ‘Thank youw
Check that name is Else
not blank i response = Ty again latz’
Check that email is ’
not blank

Check email format
If all OK, continue

Figure 10.
An Ajax State Transition

Add to Email List
Please enter your > (response)
—’ name and email name, [Back to Menuf—1#{ Home: 3|
il
| name | o Load
[email] Fetch param name
Fetch param email
Submit Update database
If update OK
Submit response = ‘Thank you’
Check that name is Else
not blank response = ‘Try again later’
Check that email is)
not blank
Check email format
If all OK, continue

AJBR

Alliance Journal of Business Research

Kieran Mathieson

Figure 11.
Modules
Training Application
Home
Welcome text
. i 1
Log » Login J Content
Y 3 .
Set sessionfuserld) : testld
Set sessionfuserName) :
¥ .
Contact [Testing]
Contact list
[_Home]
Figure 12.
Notes

Content Menu

(menu)

Load

Get session(use{.fd}

Create meny,

Display .r:f?qevf.!u\Hk \

\ Snp s o
\ 1 Setin Login:3

Y

| See contentMenu EJE

AJBR

Alliance Journal of Business Research

